
Matilde Piccoli, mp2419, 01764158

1. 03 Network Training

Task 1: Reported in Table 1 is the best validation accu-
racy for each model. For the data augmentation two models
were used: a lighter augmentation consisting of a Random-
Rotation of 0.2 and a RandomZoom of height 0.2; a more
aggressive augmentation, using a RandomRotation of 0.30,
a RandomZoom of height 0.4, vertical RandomFlip, and
a RandomTranslation (height=0.2, width=0.2, fill=’reflect’,
interpolation=’bilinear’). As expected, the first strategy
leads to similar performance as the one using no augmenta-
tion, as the data changed so little that the model did not find
any more (or less) difficulty to classify (data still represen-
tative of the original input space). On the contrary, the more
aggressive one changed the data so much that it became un-
representative of the dataset (increasing the the input space)
and the model’s performance decreased.
When using Dropout with a rate=0.2 (details in Table 1), the
performance slightly improved and the training and valida-
tion curves stayed closer throughout all epochs, indicating
that using only a part of the the neurons at every batch can
avoid overfitting, since it gives an opportunity to learn in-
dependent representations during training [2]. When Batch
Normalisation was separately applied, this did not have a
substantial difference on the best validation accuracy, but
increased the speed of convergence during training, mak-
ing the network more stable [3]. When both regularisation
techniques where applied, the validation accuracy increased
to almost 84% and, overall, the generalisation error was
lower (thanks to Drop Out) than the model without regu-
larisation and the speed of convergence higher (thanks to
Batch Nomalisation), making this combination the highest-
performing model.
Initialising the weights to zero lead to the model being stuck
in a local minimum that kept the validation accuracy to 10%
throughout all epochs, as the weight were unable to be up-
dated (no gradient) and remained fixed at the same value.
Finally, the plots of the performance of models with SGD
optimiser show how lower learning rates make the generali-
sation error decrease (validation and training curve closer to
each other in Figure 1), as the model has more time to adapt
to the problem; however, lower learning require also more
time to reach the same level of training error as the one for
higher learning rate, since the model is updated more slowly

at each epoch and therefore the overall validation accuracy
is lower (45.5% vs 71.7%) for the same number of training
epochs used.

Model Best val Parameters used
accuracy

No data aug. 79.8 % /
Data aug. 1 74.4 % rotation, zoom
Data aug. 2 59.5 % rotation, zoom, flip, translation

Dropout 81.4 % dropout after every max pool, rate=0.2
Batch norm. 79.3 % batch norm. after every max pool

Batch+Dropout 83.5 % as above, with batch before drop out
Zeros init. 10.0 % zero initialiasation

SGD 1 71.7 % learning rate = 3e− 3

SGD 2 58.9 % learning rate = 1e− 3

SGD 3 45.5 % learning rate = 3e− 4

Table 1. Best validation accuracy for each model trained

Figure 1. Losses with SGD optimiser at different learning rates:
a lower learning rate makes the generalisation error decrease, but
requires more time to reach the same level of accuracy

2. 04 Common CNN architectures
Task 1: Table 2 reports the test accuracy, training time
and inference time of the models, while Figure 2 shows their
accuracy behaviour per epoch. All three models show signs
of strong overfitting after some epochs (training accuracy
increasing 30% more while validation stays the same), due
to the high complexity of VGG16 in comparison with the
problem proposed. It was noticed that the VGG16 without
pre-training was much slower in learning, as expected, as
weights were initialised randomly, resulting in more train-
ing and therefore a longer total training time and lower test

1



accuracy for the same number of training epochs. Con-
versely, the one using transfer learning had much lower
training and inference time since was based on pre-trained
data and layers were frozen; its test accuracy was higher
after a lower number of epochs, indicating that the fea-
tures pre-learnt were representative of the test data. Fi-
nally, the model using fine tuning represents the best model
as it achieved even higher test accuracy while maintaining
a similar total training time of the transfer learning. This
is because fine tuning uses transfer learning but adapts the
model output to fit the specific problem, meaning that is a
good compromise between using pre-acquired knowledge
and adapting it to the specific data used for training. The
inference time remains similar between the model as this
is based only the forward propagation, which changes be-
tween different architectures and not different learning pro-
cess, as in this case.
For the alternative model, multiple architectures were
tested, however the ResNet50 with pre-training was the one
that gave the best training and test accuracy, similar to the
fine tuning models of VGG16, as its architecture is partic-
ularly suited for image classification problems. This model
has faster training compared to the standard VGG16 (see
slope at initial epochs in Figure 2) thanks to the transfer
learning; however, since ResNet50 is a much deeper model,
its total training time is still higher that VGG16 with similar
pre-training (model 2). Also in this case, after a few epochs,
the training accuracy keeps increasing and validation stays
the same, indicating overfitting, due to the high complexity
of the architecture.

Model Test Tot. Train Inference
Accuracy Time (ms) Time (ms)

VGG16 no pretraining 30.2% 1056 0.404
VGG16 transfer learning 46.5% 238 0.415

VGG16 fine tuning 52.2% 275 0.559
ResNet50 pretraining 51.7% 421 0.487

Table 2. Test accuracy and Times for VGG16 and ResNet50: high-
est performance achieved with fine tuning. The GPU used was the
Tesla P100-PCIE-16GB.

Figure 2. Accuracies of the VGG16 (no pretraining, transfer learn-
ing, fine tuning) and alternative model (ResNet50): overfitting af-
ter a few epochs for all the models, faster training for ResNet50

3. 05 RNN

Task 1: Figure 2 shows the test curves for different win-
dow sizes. Using a window size of 1, since the predic-
tion is based only on the previous time step, the curve is
very close to being just a copy of the true value delayed
by one time-step, with little actual predictions on the next
time-step value and giving a big error when the true value
actually changes in between time-steps. As the window
size increases, the shape of the curve is less similar to the
true value but the prediction gets more similar to the true
value in the same time-step, indicating more learning has
been achieved. This is because the prediction is based on
weighted average of multiple previous steps and therefore
the models can better capture the time behaviour. However,
if the widow size is increased beyond 14, corresponding to
the approximated periodicity of the signal, the prediction is
expected to decrease in accuracy back again as the informa-
tion included are from sample too far in the past.

Figure 3. Test curves for different window sizes compared against
the true value: better predictions of the time behaviour when the
window size increases

Task 2: Table 3 shows the test accuracy for the model us-
ing three different embedding methods and the score of pos-
itive and negative reviews, corresponding to the sentiment
prediction. The main results are: using embedding dimen-
sion of 300 and LSTM, instead of just embedding dimen-
sion of 1, makes the training faster (number of epochs in fig-
ure Appendix 7.1), but ultimately leads to lower test accu-
racy as the dimension is too high for complexity of the prob-
lem and the models overfits (training accuracy increases
whilst validation stays the same); instead, using GloVe em-
bedding helps both in terms of test accuracy and quality of
the sentiment predictions, as this model keep tracks of the
word-word co-occurrence globally [4]. This helps creat-
ing a more meaningful representation of the word space, as
demonstrated when printing the closes words to the word
”good” for the first and last model (simple embedding:
”maria”, ”hold”, ”soccer”; Glove: ”better”, ”well”, ”al-
ways” ) and noticing that only the Glove ones share an
actual link in the semantic/grammatical meaning.
The use of LSTM in the last two models helps keeping track
of the order of the words and not only whether they are

2



present or not in the sentence. Ultimately, this leads to a bet-
ter sentiment prediction for the two given examples review
(”boring and not good”, ”good and not boring”), as the
third model can distinguish when the only thing changing
is the order of the words, leading to significant difference in
the score of positive and negative reviews, conversely to the
first model (Table 3).

Model Test negative positive
Embedding LSTM Accuracy review review

(%) score (%) score (%)
dim=1 no 85.2 49.9 49.9

dim=300 yes 84.9 / /
GloVe yes 86.7 4.8 58.4

Table 3. Test accuracy for different model and sentiment predic-
tions in terms of score from 0 to 1: GloVe embedding with LSTM
outperforms the other methods

Task 3: For the word level model, it has been noticed
that if the temperature is low, the grammatical structure is
good but the variety of word/sentences is not great; while
when the temperature T is high, the vocabulary is wider
but overall meaning of the sentence is poorer. This is ex-
pected as low temperature corresponds to taking always the
safest choice (highest probability). Additionally, when the
BLEU score is computed (Figure 4), since the score is based
on matches on a word level, for the word level model, the
scores remain very similar with different temperature, since
the generated are always existing words, even if the seman-
tics of the sentence might be corrupted.
On the contrary, the text generated by the character level
model produces very different BLEU scores with different
temperature. In particular, with high T, the words gener-
ated do not correspond to any real word and the sentence
losses not only its grammatical structure, but also its seman-
tic meaning. Therefore, as the temperature rises, the BLUE
score decreases as there are less matches on a word level,
whilst at low T the performance is very similar to the word
level model, with poor variety both in words and characters
used.

Figure 4. BLEU score for different temperature values (from 0 to
2) for both the character-level model and the word-level model

4. 06 Autoencoders
Task 1: From Table 4, the performance of linear autoen-
coder and PCA led to similar results in both accuracy and
MSE of the training and validation sets, as both use lin-
ear representation of the feature space (using an orthog-
onal basis for PCA); in particular, the accuracy of non-
convolutional autoencoder, when applied to the classifier,
stayed around 80% for both training and validation no mat-
ter the number of dense layers, activation, dropout, batch etc
(final architecture in Appendix 7.2). This indicated that the
error is due to the non-linear relations in the feature space
that cannot be represented with this type of autoencoder,
rather than the architecture itself. In fact, when using a
convolutional autoencoder and encoding also the non-linear
features (asymmetric autoencoder used, architecture in Ap-
pendix 7.2), the performance increased substantially to al-
most 91%. The down side of both autoencoders, but espe-
cially the latter one, was the higher computation needed to
train the model compared to PCA; however, in the second
case, this can be largely justified given the improvement in
performance.

Model Training Validation Training Validation
Accuracy Accuracy MSE MSE

PCA 81.0% 81.4% 0.0258 0.0256
non-conv 80.9% 81.3% 0.0156 0.0124

conv 91.0% 91.5% 0.0214 0.0160

Table 4. Performance evaluation: highest performance achieved by
convolutional autoencoder, despite the higher computation; PCA
and linear autoencoders have similar accuracy. Note: a slightly
higher value in the validation set is due to the test data used, in this
case probably similar to the one used for training

Task 2: Using different loss function led to both different
quantitative performances, in terms of MSE on the test set
(Table 5), and qualitative ones, as observed form the recon-
structed images(Figure 5). In general, the MSE error seems
to match quite accurately the actual quality of the image
retrieved, and the best performance obtain, from both per-
spectives, was with MS-SSIM. In fact, this one inherits the
features of the structural index similarity of SSIM, but is
more robust to variations as it combines the SSIM index of
several versions of the image at various scales (high accu-
racy in colour, contrasts, edges and lighting). On the con-
trary, SSIM measures the similarity between pictures glob-
ally but does not take into account differences regionally,
meaning that the images are distorted in the edges, colour
and have patches. The other two loss functions tested were
MAE, which finds the average absolute distance between
the predicted and target values, and resulted in pictures ro-
bust to outliers but blurry; and PSNR, which minimises the
reconstruction error computed from ratio of power of real
and generated image globally (not particularly suited for
images) and therefore resulted in very poor quality results.

3



Loss function SSIM MS-SSIM 1/PSNR MAE
MSE (test set) 0.0081 0.0053 0.0318 0.0056

Table 5. Performance evaluation of different loss functions: lowest
error using MS-SSIM loss function

Figure 5. comparison between different loss function’s results and
the noisy and clean image: best picture using MS-SSIM

5. 07 VAE GAN
Task 1: Comparing the two VAE with and without KL
divergence loss led to the following results (Table 6): the
first model outperforms in terms of the Inception Score, as
this takes into consideration the probability distribution of
y compared to real values, and the KL has the effect of op-
timising this distribution (making it close to uniform); the
MSE is, however, slightly lower for the model without KL
divergence, since this model’s optimisation process is fully
relaying on this type of loss. The cGAN had the best IS
out of all the three models, indicating that even if cGAN
don’t actually minimise the difference in distribution be-
tween produced and target ones, it still recreates it by trying
to generate data that can fool the discriminator [5].

Model MSE IS on test set
VAE with latent dim = 10 0.0116 7.3363

VAE without KL divergence 0.0107 6.0321
GAN with random dim = 10 / 8.1955

Table 6. MSE and Inception score on the test set for different VAE
and GAN models: best performance given by GAN

Task 2: The quantitative scores (MAE) of the MAE and
cGAN trained model are very similar (score of 0.0449
and 0.0458 respectively), with the first model characterised
by a slightly better performance (probably due to the loss
function itself being MAE). However, when inspecting the
qualitative results (Appendix 7.3), it is clear that the two
strategies used lead to different result: the MAE-trained
model leads to a range of colours quite restricted, whilst
the cGAN-trained model uses a range of colours more sim-
ilar to real pictures one and, despite the error compared to
the actual picture, and maintain a quite realistic relation be-
tween coloured areas within the pictures. The MAE-model
have a lower quantitative error, but its qualitative outcome is

closer to the BW picture than to the original one, opposite to
the cGAN results. This is because cGAN has a more flexi-
ble and accurate way of calculating the loss during training,
as the discriminator works as loss function that is learned
directly from the data and updated throughout the training,
instead of using a fixed loss function (such as MAE) a priori
[1]. Therefore, we could say that, overall, the performance
of the second model is higher, since for similar quantitative
result, the qualitative ones are better.

6. 08 RL
Task 1: Q-learning and SARSA mainly differ in the way
of updating Q, since the first bases it on the maximum Q’
over all possible actions A for the next state S’ (off-policy
learning method) while the second uses the same policy
used for updating of A’ (on-policy). Therefore, since Q
learning does not use the policy to update Q(s,a)[6], when
changing between ϵ-greedy and Softmax, its behaviour
(Figure 6) does not differ much in terms of speed of conver-
gence to a high score. Conversely, SARSA behaviour varies
a lot between the two policies: using ϵ-greedy, SARSA
has a similar performance to Q-learning, reaching the max-
imum score similarly fast and remaining stable; however,
when SARSA is based on Softmax policy, the performance
decreases, mainly because of the temperature used (T =
0.025); this temperature influences the speed of conver-
gence as the algorithms chooses almost always the value in
the same column of the array of possible actions (left/right).
In fact, when changing the temperature of Softmax, the
performance changed significantly, outperforming ϵ-greedy
policy if T = 0.04, and performing slower training again
when T was further increase (very low confidence in the ac-
tion taken). This is a further indication of how SARSA per-
formance is strictly linked to the policy (updating the next
state) and how Softmax is itself highly dependent on the
parametrisation of its probability distribution (high temper-
atures correspond to low penalisation of bigger logits and
lower confidence, but also possibility of successful explo-
ration [7]). Modifications for SARSA and Softmax can be
found in the Appendix 7.4.

Figure 6. average reward for the last 50 episodes vs. number of
training episodes: Q-learning depends much less on the type of
policy then SARSA

4



7. Appendix

7.1. 05 RNN

Figure 7 shows the training and validation accuracy
curves for the different text embedding models. the high-
est accuracy was obtained when using LSTM (model 2 and
3), faster training (y axis) using GLoVe embedding (model
3, pre-learning), and smallest generalisation error with the
simpler model (model 1, no overfitting).

Figure 7. performance of different embedding models: highest ac-
curacy obtained when using LSTM; faster training (y axis) using
GLoVe embedding

7.2. 06 Autoencoders

Figure 8 shows the architectures used for the non-
convolutional and convolutional autoencoders: the first one
consists of a sequences of Dense, Batch Normalisation and
Drop Out layers with Softmax activation; the second con-
sists of four series of Convolutional and Max Pooling (or
Global Pooling) layers with increasing number of convolu-
tional filters and ReLu activation, and then Dense, Batch
Normalisation and Drop Out layers. The autoencoder is
asymmetric as this showed to improve the timings whilst
maintaining the performance (encoder and decoder are not
symmetric).

Figure 8. architectures used for the non-convolutional and convo-
lutional autoencoders

7.3. 07 VAE GAN

Figure 9 shows the comparison in terms of qualitative
performance between the MAE and cGAN-based model.
The colours are more realistic in the pictured produced by
cGAN, despite the fact that they might be wrong compared
to the original picture and the quantitative error is very sim-
ilar to the MAE model.

5



Figure 9. qualitative examples of the performance of MAE and
cGAN models, more realistic colouring obtained with cGAN

7.4. 08 RL

The modification to use SARSA instead of Q-learning
consisted in changing the function that updated S’ in
Q’(S’,A) by introducing exploration on top of the possibil-
ity to exploit the policy.
Additionally, to implement the Softmax policy, the e-greedy
was modified so that exploration happens instead of de-
pending on a threshold set by epsilon, by a number gen-
erated by a uniform distribution and compared to the output
of softmax applied to the score produced by the function
model.predict().

References
[1] A blog on a.i. https://nchlis.github.io/2019 11 22/page.html.
[2] J. Brownlee. Understand the impact of learn-

ing rate on neural network performance.
https://machinelearningmastery.com/dropout-regularization-
deep-learning-models-keras.

[3] J. Huber. Batch normalisation.
https://towardsdatascience.com/batch-normalization-in-3-
levels-of-understanding.

[4] C. D. M. Jeffrey Pennington, Richard Socher.
Glove: Global vectors for word representation.
https://nlp.stanford.edu/projects/glove/.

[5] S. Li. Gan or vae? https://medium.com/@lishuo1/which-one-
should-you-choose.

[6] A. R.Sutton. difference between q-learning and sarsa.
https://stackoverflow.com/questions/6848828.

[7] K. Te. How does temperature affect softmax in ma-
chine learning. http://www.kasimte.com/2020/02/14/how-
does-temperature-affect-softmax-in-machine-learning.

6


